Algebraic construction of a new class of quasi-orthogonal arrays for steganography

نویسندگان

  • Ron G. van Schyndel
  • Andrew Z. Tirkel
  • Imants D. Svalbe
  • Thomas E. Hall
  • Charles F. Osborne
چکیده

Watermark recovery is often based on cross-correlating images with pseudo-noise sequences, as access to un-watermarked originals is not required. Successful recovery of these watermarks is determined by the (periodic or aperiodic) sequence autoand cross-correlation properties. This paper presents several methods of extending the dimensionality of 1D sequences in order to utilise the advantages that this offers. A new type of 2D array construction is described, which meets the above requirements. They are constructed from 1D sequences that have good auto-correlation properties by appending rows of cyclic shifts of the original sequence. The sequence values, formed from the roots of unity, offer additional diversity and security over binary arrays. A family of such arrays is described which have low cross-correlation and can be folded and unfolded, rendering them robust to cryptographic attack. Row and column products of 1D Legendre sequences can also produce equally useful 2D arrays (with interesting properties resulting from the Fourier invariance of Legendre sequences). A metric to characterise all these 2D correlation based watermarks is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-orthogonal Arrays and Optimal Fractional Factorial Plans

Generalizing orthogonal arrays, a new class of arrays called quasiorthogonal arrays, are introduced and it is shown that fractional factorial plans represented by these arrays are universally optimal under a wide class of models. Some methods of construction of quasi-orthogonal arrays are also described.

متن کامل

An Asymptotic Gilbert - Varshamov Bound for ( T , M , S ) - Nets

(t,m, s)-nets are point sets in Euclidean s-space satisfying certain uniformity conditions, for use in numerical integration. They can be equivalently described in terms of ordered orthogonal arrays, a class of finite geometrical structures generalizing orthogonal arrays. This establishes a link between quasi-Monte Carlo methods and coding theory. In the present paper we prove an asymptotic Gil...

متن کامل

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions

In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.

متن کامل

On Construction of a Class of Orthogonal Arrays

We propose a novel method for the construction of orthogonal arrays. The algorithm makes use of the Kronecker Product operator in association with unit column vectors to generate new orthogonal arrays from existing orthogonal arrays. The effectiveness of the proposed algorithm lies in the fact that it works well with any linear seed orthogonal array without imposing any constraints on the stren...

متن کامل

Some New Properties of the Searching Probability

Consider search designs for searching one nonzero 2- or 3-factor interaction under the search linear model. In the noisy case, search probability is given by Shirakura et al. (Ann. Statist. 24(6) (1996) 2560). In this paper some new properties of the searching probability are presented. New properties of the search probability enable us to compare designs, which depend on an unknown parameter ?...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999